A posteriori error analysis for a cut cell finite volume method
نویسندگان
چکیده
We describe a hybrid modeling-discretization numerical method for approximating the solution of an elliptic problem with a discontinuous diffusion coefficient that is suited for cut-cell problems in which the discontinuity interface is not resolved by the mesh. The method is inspired by the well-known Ghost Fluid Method. We carry out an a posteriori error analysis for the numerical solution for the error in a quantity of interest that is based on variational analysis, residual error and the adjoint problem. We separately identify the effects of discretization, modeling and quadrature errors on the error in the quantity of interest. We illustrate the properties of the method and the estimate in a series of examples.
منابع مشابه
A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems
In this paper, we conduct an a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme. The a posteriori error analysis is based on variational analysis, residual error and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choic...
متن کاملCell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods
A cell conservative flux recovery technique is developed here for vertexcentered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant free a posteriori error estimator which is proven to be reliable and efficient. Some numerical tests ...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA Posteriori Error Estimate and Adaptive Mesh Refinement for the Cell-Centered Finite Volume Method for Elliptic Boundary Value Problems
We extend a result of Nicaise [13] for the a posteriori error estimation of the cell-centered finite volume method for the numerical solution of elliptic problems. Having computed the piecewise constant finite volume solution uh, we compute a Morley-type interpolant Iuh. For the exact solution u, the energy error ‖∇T (u− Iuh)‖L2 can be controlled efficiently and reliably by a residual-based a p...
متن کاملA posteriori error estimate for finite volume approximations of nonlinear heat equations
In this contribution we derive a posteriori error estimate for finite volume approximations of nonlinear convection diffusion equations in the L∞(L1)-norm. The problem is discretized implicitly in time by the method of characteristics, and in space by piecewise constant finite volume methods. The analysis is based on a reformulation for finite volume methods. The derived a posteriori error esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009